If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+3x^2=1200
We move all terms to the left:
4x+3x^2-(1200)=0
a = 3; b = 4; c = -1200;
Δ = b2-4ac
Δ = 42-4·3·(-1200)
Δ = 14416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14416}=\sqrt{16*901}=\sqrt{16}*\sqrt{901}=4\sqrt{901}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{901}}{2*3}=\frac{-4-4\sqrt{901}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{901}}{2*3}=\frac{-4+4\sqrt{901}}{6} $
| 1.3(x-5)=26 | | (2x+1)+(6x+9)=90 | | 4.25(x+85)=2911.25 | | .3(x+50)+.5x=31 | | 18+.14x=8+.18x | | 13x+29=81 | | 180m-3640=5200 | | 0.1(x+15)=31.50 | | 9=n-12 | | -80m+5200=5200 | | -80m+5200=180m-3640 | | 1.2=1.5x+2 | | (x^2+2x)^2=0 | | 7x+1=2×(2x+11) | | 7x+1=2x(2x+11) | | 95+d=220-4d | | x2+x6=7 | | 28.245=0.25x | | 22(18-n)+36n=480 | | s+207=-524 | | 5^x=109 | | 14.45+0.08h=15.20+0.15h | | 3.25(x+10)=357.50 | | (3x+2)^10=0 | | 125m-75m+38,600=40,000+150m | | 7/2=x/146 | | 3x+1=2x=12 | | b+12=17 | | 9(w-9)-2=-7(w-8) | | 1.8=(1+(0.4/x))^x | | 2g=16 | | 0.25(x+170)=72.5 |